

18 March 2025

KORSNÄS DELIVERS HIGH-GRADE HEAVY REE INTERCEPTS

Highlights:

- Latest assays confirm continuity and extent of high-grade REE mineralisation within the Korsnäs project.
- Numerous significant intercepts (refer Table 1) over 1% TREO¹.
- High-grade up assay results up to 4.6% TREO.
- Heavy REE enrichment – notably Terbium (Tb₄O₇) up to 61.3 ppm and Dysprosium (Dy₂O₃) up to 234.2 ppm, reinforcing the Korsnäs project's strategic value.
- A total of 4,035 samples analysed from 237 drill holes, covering 6,453 metres of historic drilling now completed.
- Previously reported Mineral Resource Estimate now being updated, supporting ongoing development and metallurgical studies.
- Consistent results confirm REE mineralisation continuity at depth and along strike, highlighting significant exploration upside potential.

Prospech Managing Director, Jason Beckton, commented:

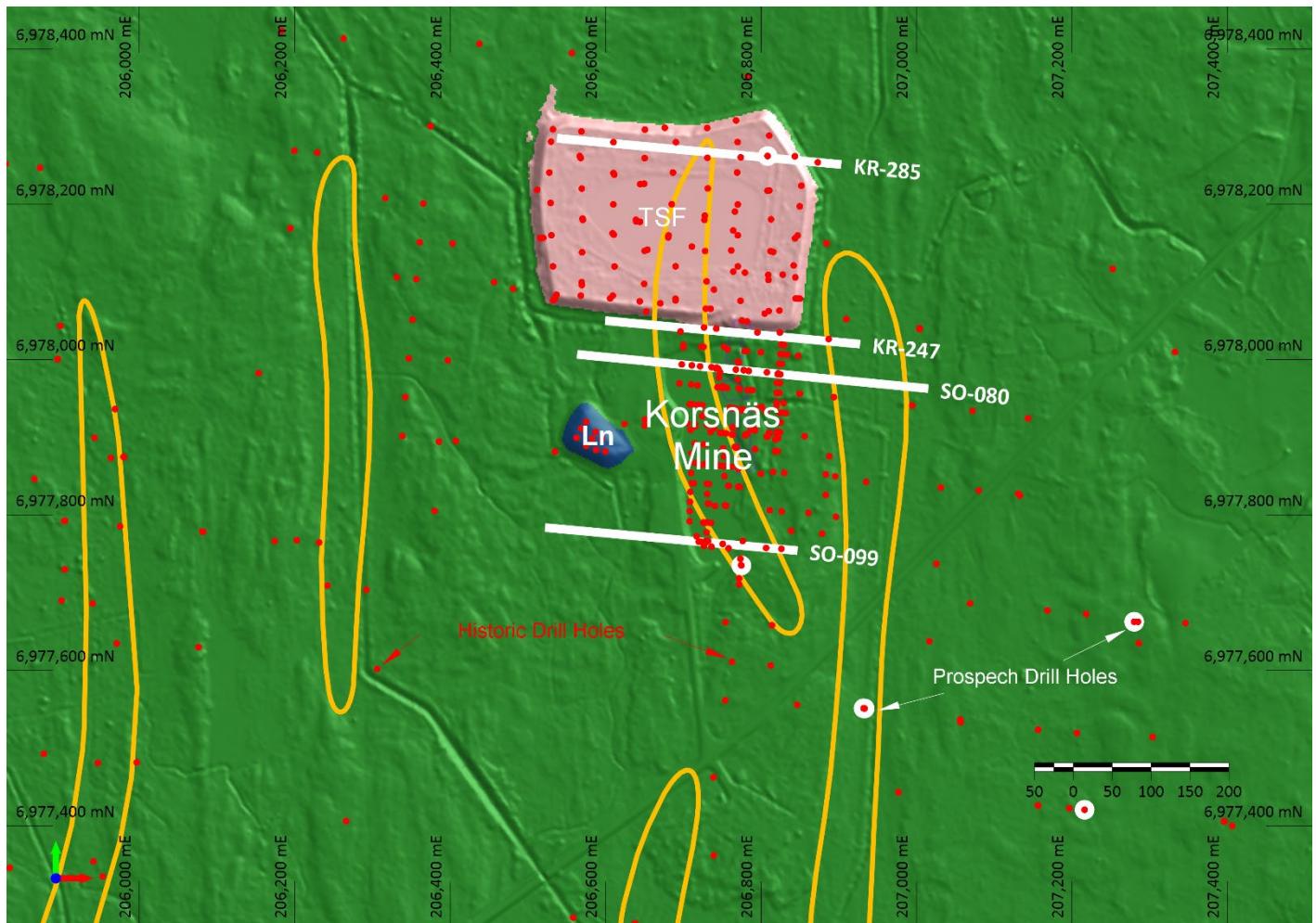
"Korsnäs is now known as a significant REE project. The consistency of high-grade mineralisation, combined with heavy rare earth enrichment, is an exciting confirmation of the project's strategic importance. With these final assays now received, we are now updating the Korsnäs Mineral Resource Estimate, providing a possible solution to the lack of REE supply in Europe. The scale and quality of the results announced over the past 24 months, strengthen our confidence in Korsnäs as a premier REE asset in Europe at a time of growing demand for secure, high-quality rare earth supply."

On other developments, metallurgical studies are progressing and yesterday I visited the University of Oulu testwork facilities with our Finnish partners in the REMHub project, the European Union backed and funded initiative aimed at advancing REE processing technologies in Europe. Metallurgical studies are underway at the University of Oulu and also at GTK Mintek - the processing arm of the Geological Survey of Finland. An update on the metallurgical testwork will be released upon initial results in the near future."

Prospech Limited (ASX: PRS, **Prospech or the Company**) is pleased to announce further excellent assay results from the final sampling by Prospech geologists of historic drill core from the Korsnäs Rare Earth Elements (**REE**) project preserved by the Geological Survey of Finland (**GTK**).

These results mark the completion of a comprehensive program of geologic logging, sampling and assaying of 479 historic diamond core drill holes completed in the 1950s, 60s and early 70s which have now been validated by recent Prospech diamond drilling.

¹ TREO = Total Rare Earth Oxides which is the sum of La₂O₃, CeO₂, Pr₆O₁₁, Nd₂O₃, Sm₂O₃, Eu₂O₃, Gd₂O₃, Tb₄O₇, Dy₂O₃, Ho₂O₃, Er₂O₃, Tm₂O₃, Yb₂O₃, Lu₂O₃ and Y₂O₃.



Level 12, 66 Hunter Street, Sydney NSW 2000 Australia

Prospech geologists evaluated 479 historic diamond drill holes, physically inspecting, photographing and testing 275 of them using portable X-ray fluorescence (pXRF). The remaining drill holes, primarily underground, were not inspected as they represent ore mined during the original operations in the 1960s and 1970s. Following the completion of geological evaluation in April 2024, core cutting and assaying continued, resulting in 4,035 samples covering 6,453 metres from 237 holes.

With the receipt of these final assay results, Prospech is now proceeding to update the Mineral Resource Estimate announced on 4 December 2024.

Figure 1. Korsnäs map showing the gravity-low anomalies which strongly correlate with near-surface mineralisation (yellow ellipses), drill collars (red dots), holes drilled in 2024 by Prospech (red dots with white halo), the location of drill sections presented below (white bars), the Tailings Storage Facility (TSF) and the Lanthanide Concentrate Stockpile (Ln).

Originally mined for lead, Korsnäs is now recognised for its extensive REE mineralisation, which remains open for expansion both along strike and at depth. The deposit features a network of layered carbonatite zones, some reaching up to 20 metres in thickness, spaced between 50 and 400 metres apart. These REE-rich zones show a strong correlation with gravity anomalies, illustrated as yellow ellipses in Figure 1. So far, exploration has identified five key anomalies extending across more than five kilometres of strike, highlighting the project's strong growth potential.

Significant high-grade intercepts in the latest assay results include:

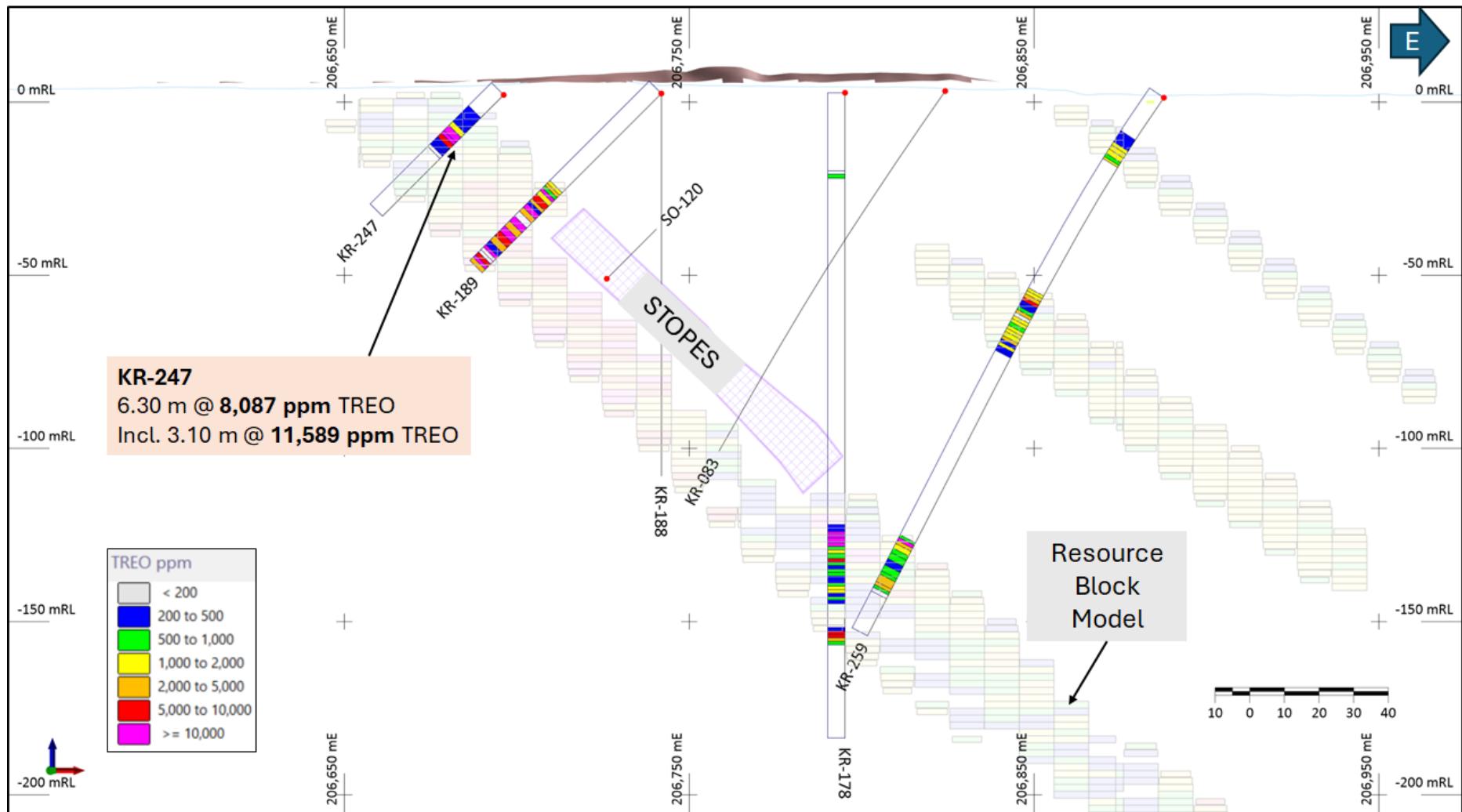
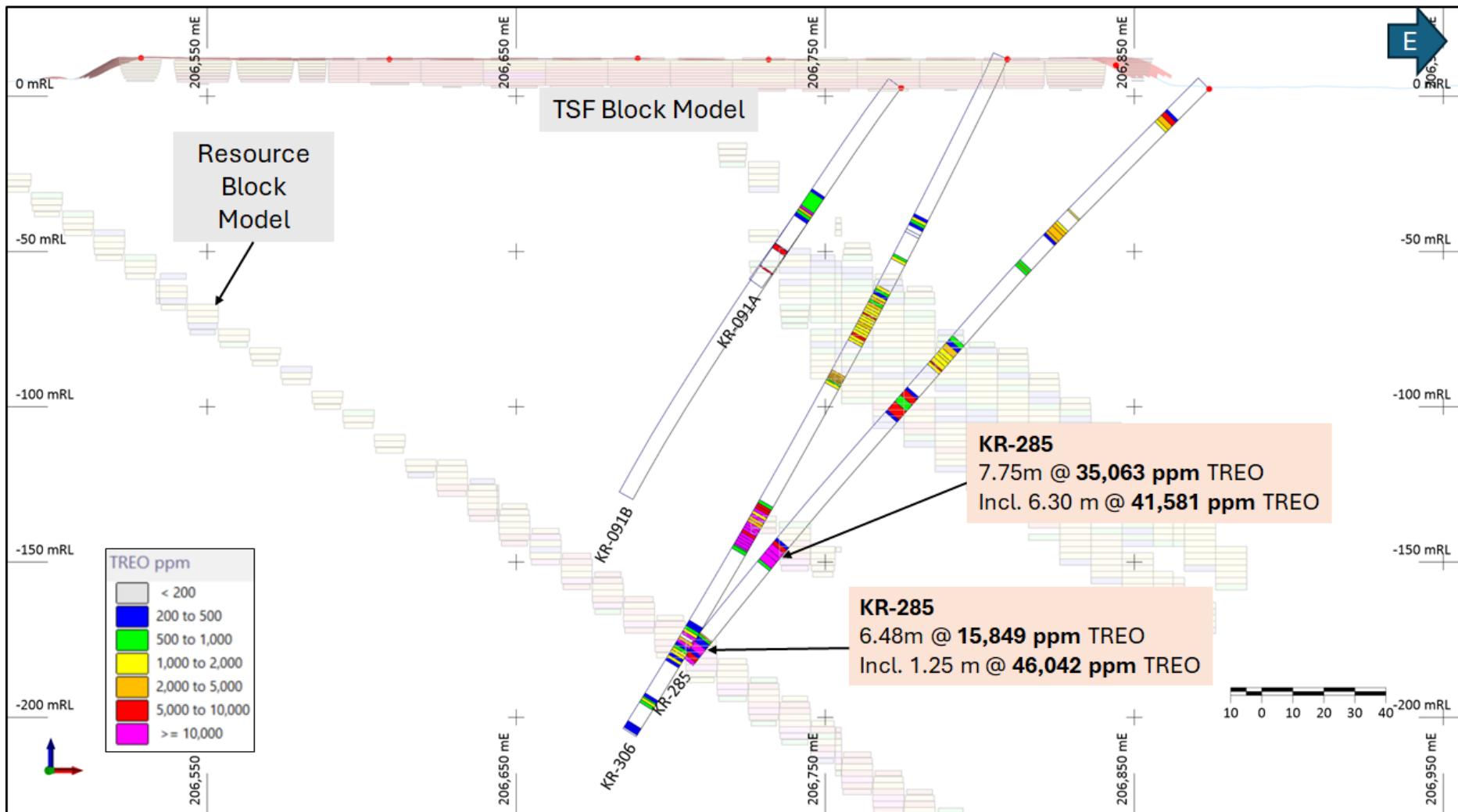
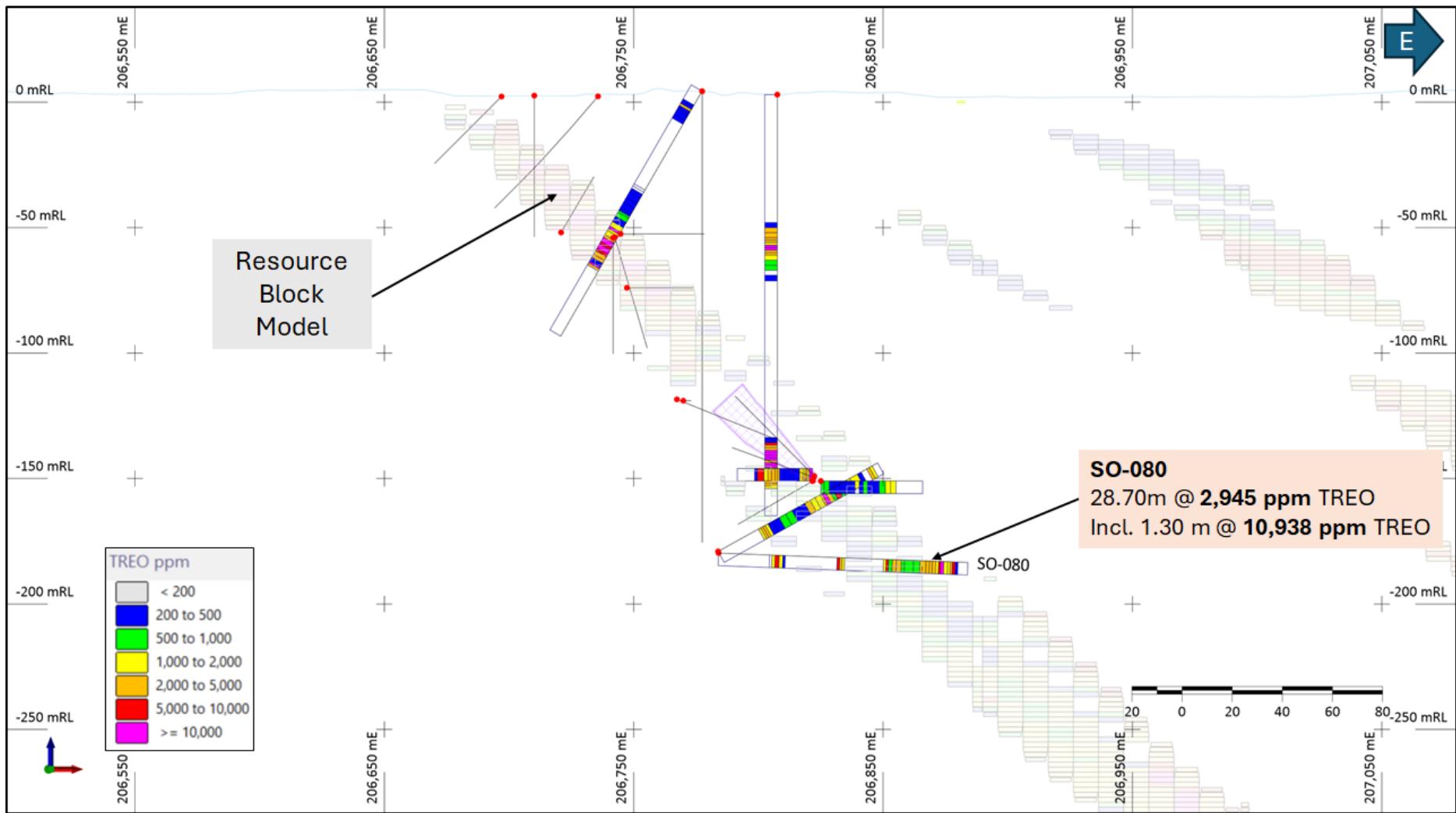
- **KR-285: 7.7m @ 35,063 ppm TREO (NdPrO 6,291 ppm)**
including 6.3m @ 41,581 ppm TREO (NdPrO 7,443 ppm)
and 6.5m @ 15,849 ppm TREO (NdPrO 2,709 ppm)
including 1.2m @ 46,042 ppm TREO (NdPrO 7,594 ppm)
- **KR-247: 6.3m @ 8,087 ppm TREO (NdPrO 2,318 ppm)**
including 3.1m @ 11,589 ppm TREO (NdPrO 3,274 ppm)
- **SO-080: 28.7m @ 2,945 ppm TREO (NdPrO 815 ppm)**
including 1.30m @ 10,938 ppm TREO (NdPrO 3,298 ppm)
- **SO-099: 1.4m @ 13,894 ppm TREO (NdPrO 4,199 ppm)**
including 0.40m @ 28,498 ppm TREO (NdPrO 8,766 ppm)

Below is a table of assay intersections from the current batch of sampling historical drill holes.

Hole_Id	From_m	To_m	Thick_m	TREO_ppm	NdPrO_ppm	NdPrO enrich	Tb4O7_ppm	Dy2O3_ppm
KR-015	23.24	28.55	5.31	5,020	1,220	24%	7.0	26.9
KR-235	50.50	64.87	14.37	1,208	283	23%	1.9	8.3
KR-235	86.68	87.98	1.30	1,339	285	21%	2.0	10.1
KR-235	110.23	115.75	5.52	2,740	720	26%	4.4	17.1
KR-235	146.60	154.14	7.54	1,585	389	25%	2.6	11.5
KR-235	156.97	157.47	0.50	2,454	531	22%	2.8	11.7
KR-247	15.75	22.05	6.30	8,087	2,318	29%	15.1	60.5
KR-247	including	17.39	20.49	3.10	11,589	3,274	28%	21.8
KR-285	15.20	19.80	4.60	4,977	1,313	26%	7.8	27.8
KR-285	59.25	59.80	0.55	1,354	335	25%	3.4	13.3
KR-285	64.55	69.95	5.40	2,921	632	22%	3.2	12.2
KR-285	82.80	83.20	0.40	1,473	281	19%	1.6	8.5
KR-285	117.52	126.65	9.13	1,781	439	25%	3.0	11.9
KR-285	137.45	146.20	8.75	5,579	1,582	28%	9.8	34.0
KR-285	201.55	209.30	7.75	35,063	6,291	18%	7.8	22.7
KR-285	including	203.00	209.30	6.30	41,581	7,443	18%	8.9
KR-285		242.96	249.44	6.48	15,849	2,709	17%	3.7
KR-285	including	248.20	249.44	1.24	46,042	7,594	16%	9.3
SO-080	21.39	25.70	4.31	3,159	802	25%	4.8	19.2
SO-080		47.39	50.39	3.00	3,145	870	28%	4.9
SO-080	65.90	94.60	28.70	2,945	815	28%	5.1	19.7
SO-080	including	88.70	90.00	1.30	10,938	3,298	30%	20.8
SO-099		57.90	59.30	1.40	13,894	4,199	30%	28.5
SO-099	including	58.90	59.30	0.40	28,498	8,766	31%	61.3
SO-099		139.50	141.04	1.54	1,951	391	20%	2.3
								9.5

Table 1 – REE mineralised zones reported in this update.

Intercepts in this table and throughout the report are reported as downhole lengths as true widths are not yet determined. A listing drill hole collar coordinates and specifications is included in JORC Table 1 below.

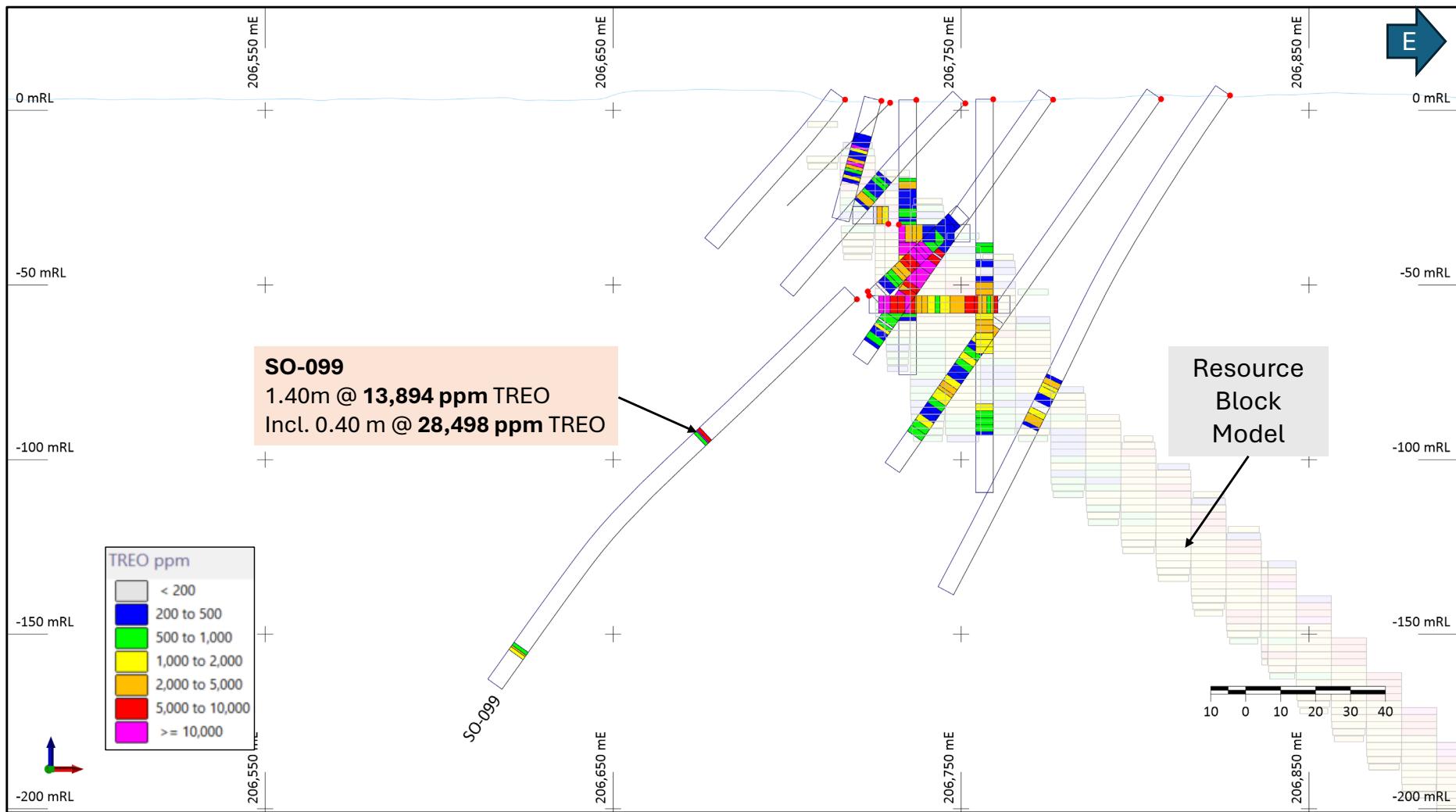

Figure 2. Cross section of KR-247 which intersected REE mineralisation up-dip from historical Korsnäs mine stopes.

Figure 3: Cross-section of KR-285, which intersected multiple zones of high-grade REE mineralisation north of the historical Korsnäs mine stopes. The results for this hole were originally reported on 24 October 2023; however, additional sampling was conducted to delineate the high-grade intersection further. KR-285 was replicated by a Prospecch drill hole completed in 2024.

Figure 4. Cross section of SO-080 which intersected a zone of REE mineralisation with a horizontal thickness of 28m, situated down-dip from historical Korsnäs mine stopes.

Figure 5. Cross-section of SO-099, drilled from underground in the opposite direction to the mine lode. Despite this, the hole intersected REE mineralisation, indicating the presence of nearby parallel mineralised zones.

About Prospecch Limited

Founded in 2014, the Company focuses on mineral exploration in Finland and Slovakia, with a mission to discover, define, and develop critical elements deposits containing metals such as rare earths, lithium, cobalt, copper, silver, and gold. Prospecch is actively positioning itself to contribute to Europe's mobility revolution and energy transition. With a strong portfolio of prospective base and precious metals projects in Slovakia, and the recent focus on rare earth element (REE) projects in Finland, the Company is strategically aligned with the increasing demand for locally sourced minerals in Eastern and Northern Europe, regions that are highly supportive of mining. As demand for these critical elements grows, Prospecch aims to become a leading player in the European market.

For further information, please contact:

Jason Beckton
Managing Director
Prospecch Limited
+61 (0) 438 888 612

Jane Morgan
Investor Relations
jm@janemorganmanagement.com.au
+61 (0) 405 555 618

This announcement has been authorised for release to the market by the Managing Director.

Competent Person's Statement

The information in this Report that relates to Exploration Results is based on information compiled by Mr Jason Beckton, who is a Member of the Australian Institute of Geoscientists. Mr Beckton, who is Managing Director of the Company, has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Beckton consents to the inclusion in this Report of the matters based on the information in the form and context in which it appears.

pjn12565

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
<i>Sampling techniques</i>	<p><i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i></p> <p><i>Aspects of the determination of mineralisation that are Material to the Public Report.</i></p> <p><i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i></p>	<p>Historic: The Finnish government facility in Loppi houses the historical core from the Korsnäs project. The core is of BQ and AQ sizes. Prospective sampling was conducted consistently within the specified intervals. For cores that were never sampled before, a $\frac{1}{2}$-core sampling method was used, while for cores that had been previously sampled, a $\frac{1}{4}$-core sampling method was employed.</p> <p>Modern: HQ2 coring. $\frac{1}{4}$ cored using diamond blade core saw and sampled at nominally 1-m intervals through altered and mineralised zones</p>
<i>Drilling techniques</i>	<p><i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i></p>	<p>Historic: Small diameter diamond drilling – approximately AQ and BQ size.</p> <p>Modern: HQ2 diamond drilling.</p>
<i>Drill sample recovery</i>	<p><i>Method of recording and assessing core and chip sample recoveries and results assessed.</i></p> <p><i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i></p> <p><i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i></p>	<p>Historic: Core preserved at government GTK facility in Loppi.</p> <p>Modern: Core recoveries determined on a run by run basis. Mineralised core is generally more friable than fresh rock and minor core loss did occur. Overall core recoveries were judged as excellent.</p>
<i>Logging</i>	<p><i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i></p> <p><i>Whether logging is qualitative or quantitative in nature.</i></p> <p><i>Core (or costean, channel, etc) photography.</i></p> <p><i>The total length and percentage of the relevant intersections logged.</i></p>	<p>The complete core was visually logged by the project geologist. RQDs and photos were taken of all core.</p> <p>Core is oriented where ground conditions permit and structural measurements taken.</p>
<i>Sub-sampling techniques and sample preparation</i>	<p><i>If core, whether cut or sawn and whether quarter, half or all core taken.</i></p> <p><i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i></p> <p><i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i></p> <p><i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i></p> <p><i>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</i></p> <p><i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i></p>	<p>$\frac{1}{2}$ or $\frac{1}{4}$ core cut with a thin diamond blade (due to the small diameter of the core).</p> <p>$\frac{1}{4}$ core field duplicated samples have been collected every 25th sample.</p>
<i>Quality of assay data and laboratory tests</i>	<p><i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i></p> <p><i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i></p> <p><i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i></p>	<p>Historic: Samples are stored in the Loppi relogging facility. Core in good condition.</p> <p>Assays will be carried out by ALS, an internationally certified laboratory.</p> <p>Historic assays obtained from paper logs have no record of the analytical methods used nor any record of QAQC procedures. However, where we have modern assays covering the same intervals as the historic assays, the agreement is good. (e.g. historic assay: KR-289: 18.5m @ 11,100 ppm TREO from 51.85m vs. modern assay: 18.3m @ 13,201 ppm TREO from 51.7m). In the coming months there will be many more modern assays available, which will allow a better comparison.</p>

Criteria	JORC Code explanation	Commentary
		<p>Modern: Assays will be carried out by ALS, an internationally certified laboratory. Field duplicates were collected every 25th sample. ½ core retained destined for metallurgical test work. ¼ core retained in the tray. Core trays stored at mine site.</p>
<i>Verification of sampling and assaying</i>	<p><i>The verification of significant intersections by either independent or alternative company personnel.</i> <i>The use of twinned holes.</i> <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> <i>Discuss any adjustment to assay data.</i></p>	KR-305, KR-306, KR-307, KR-309 and KR-310 twinned historic intersections and confirmed the historic information. KR-308 extended one of the Korsnäs mineralised structures (results reported previously)
<i>Location of data points</i>	<p><i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> <i>Specification of the grid system used.</i> <i>Quality and adequacy of topographic control.</i></p>	<p>Historic: Hole locations determined from historical records and converted to ETRS-TM35FIN projection (EPSG:3067).</p> <p>Modern: All hole collars have been surveyed using a DGPS. A north-seeking gyro instrument was used for down-hole surveys.</p>
<i>Data spacing and distribution</i>	<p><i>Data spacing for reporting of Exploration Results.</i> <i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i> <i>Whether sample compositing has been applied.</i></p>	Only visible lead mineralisation was historically assayed. Prospecch is targeting broader zones of REE mineralisation.
<i>Orientation of data in relation to geological structure</i>	<p><i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i> <i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i></p>	No bias is believed to be introduced by the sampling method.
<i>Sample security</i>	<i>The measures taken to ensure sample security.</i>	<p>Historic: Samples were collected by GTK personnel, bagged and immediately dispatched to the laboratory by independent courier.</p> <p>Modern: Samples were collected by Prospecch personnel, bagged and immediately dispatched to the laboratory by independent courier.</p>
<i>Audits or reviews</i>	<i>The results of any audits or reviews of sampling techniques and data.</i>	No audits or reviews of the data management system have been carried out.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	<p><i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i> <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.</i></p>	<p>Prospecch Limited has 100% interest in Bambra Oy ('Bambra'), a company incorporated in Finland. The laws of Finland relating to exploration and mining have various requirements. As the exploration advances specific filings and environmental or other studies may be required. There are ongoing requirements under Finnish mining laws that will be required at each stage of advancement. Those filings and studies are maintained and updated as required by Prospecch's environmental and permit advisors specifically engaged for such purposes. The Company is the manager of operations in accordance with generally accepted mining industry standards and practices. The Korsnäs project's tenure is secured by Exploration Permit Application Number ML2021:0019 Hägg and Reservation Notification VA2023:0040 Hägg 2.</p>
<i>Exploration done by other parties</i>	<i>Acknowledgment and appraisal of exploration by other parties.</i>	The area of Korsnäs has been mapped, glacial till boulder sampled and drilled by private companies including and Outokumpu Oy.
<i>Geology</i>	<i>Deposit type, geological setting and style of mineralisation.</i>	45 degree dipping carbonate veins and anti-skarn selvedges within sub-horizontally foliated metamorphic terrain.

Criteria	JORC Code explanation	Commentary																																																	
Drill hole Information	<p><i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i></p> <p><i>easting and northing of the drill hole collar</i></p> <p><i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</i></p> <p><i>dip and azimuth of the hole</i></p> <p><i>down hole length and interception depth</i></p> <p><i>hole length.</i></p> <p><i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i></p>	<p>Drill Hole Collar Information ETRS-TM35FIN projection (EPSG:3067).</p> <p>Table of collar specifications of new holes reported are:</p>																																																	
		<table border="1"> <thead> <tr> <th data-bbox="915 294 986 316">HOLE_ID</th><th data-bbox="986 294 1058 316">EAST_m</th><th data-bbox="1058 294 1129 316">NORTH_m</th><th data-bbox="1129 294 1201 316">RL_m</th><th data-bbox="1201 294 1272 316">AZIMUTH</th><th data-bbox="1272 294 1344 316">DIP</th><th data-bbox="1344 294 1484 316">FINAL_DEPTH_m</th></tr> </thead> <tbody> <tr> <td data-bbox="915 316 986 339">KR-015</td><td data-bbox="986 316 1058 339">205,708.73</td><td data-bbox="1058 316 1129 339">6,978,263.63</td><td data-bbox="1129 316 1201 339">3.13</td><td data-bbox="1201 316 1272 339">95.3</td><td data-bbox="1272 316 1344 339">-38</td><td data-bbox="1344 316 1484 339">140.25</td></tr> <tr> <td data-bbox="915 339 986 361">KR-235</td><td data-bbox="986 339 1058 361">207,638.79</td><td data-bbox="1058 339 1129 361">6,978,383.29</td><td data-bbox="1129 339 1201 361">2.50</td><td data-bbox="1201 339 1272 361">275.3</td><td data-bbox="1272 339 1344 361">-45</td><td data-bbox="1344 339 1484 361">200.55</td></tr> <tr> <td data-bbox="915 361 986 384">KR-247</td><td data-bbox="986 361 1058 384">206,696.31</td><td data-bbox="1058 361 1129 384">6,978,036.23</td><td data-bbox="1129 361 1201 384">2.07</td><td data-bbox="1201 361 1272 384">275.3</td><td data-bbox="1272 361 1344 384">-45</td><td data-bbox="1344 361 1484 384">49.50</td></tr> <tr> <td data-bbox="915 384 986 406">KR-285</td><td data-bbox="986 384 1058 406">206,872.94</td><td data-bbox="1058 384 1129 406">6,978,253.89</td><td data-bbox="1129 384 1201 406">2.35</td><td data-bbox="1201 384 1272 406">275.3</td><td data-bbox="1272 384 1344 406">-45</td><td data-bbox="1344 384 1484 406">249.44</td></tr> <tr> <td data-bbox="915 406 986 429">SO-080</td><td data-bbox="986 406 1058 429">206,784.11</td><td data-bbox="1058 406 1129 429">6,977,985.39</td><td data-bbox="1129 406 1201 429">-179.72</td><td data-bbox="1201 406 1272 429">96.433</td><td data-bbox="1272 406 1344 429">-2.15</td><td data-bbox="1344 406 1484 429">99.55</td></tr> <tr> <td data-bbox="915 429 986 451">SO-099</td><td data-bbox="986 429 1058 451">206,719.76</td><td data-bbox="1058 429 1129 451">6,977,765.60</td><td data-bbox="1129 429 1201 451">-54.08</td><td data-bbox="1201 429 1272 451">275.3</td><td data-bbox="1272 429 1344 451">-45</td><td data-bbox="1344 429 1484 451">151.44</td></tr> </tbody> </table>	HOLE_ID	EAST_m	NORTH_m	RL_m	AZIMUTH	DIP	FINAL_DEPTH_m	KR-015	205,708.73	6,978,263.63	3.13	95.3	-38	140.25	KR-235	207,638.79	6,978,383.29	2.50	275.3	-45	200.55	KR-247	206,696.31	6,978,036.23	2.07	275.3	-45	49.50	KR-285	206,872.94	6,978,253.89	2.35	275.3	-45	249.44	SO-080	206,784.11	6,977,985.39	-179.72	96.433	-2.15	99.55	SO-099	206,719.76	6,977,765.60	-54.08	275.3	-45	151.44
HOLE_ID	EAST_m	NORTH_m	RL_m	AZIMUTH	DIP	FINAL_DEPTH_m																																													
KR-015	205,708.73	6,978,263.63	3.13	95.3	-38	140.25																																													
KR-235	207,638.79	6,978,383.29	2.50	275.3	-45	200.55																																													
KR-247	206,696.31	6,978,036.23	2.07	275.3	-45	49.50																																													
KR-285	206,872.94	6,978,253.89	2.35	275.3	-45	249.44																																													
SO-080	206,784.11	6,977,985.39	-179.72	96.433	-2.15	99.55																																													
SO-099	206,719.76	6,977,765.60	-54.08	275.3	-45	151.44																																													
Data aggregation methods	<p><i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</i></p> <p><i>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i></p> <p><i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i></p>	<p>A minimum sample length is 1m generally but can be as low as 0.15m is observed in historical sampling.</p> <p>A lower cut off of 1,000 ppm was used to define reportable mineralised zones.</p> <p>No high-grade cutting was done.</p> <p>Total Rare Earth Oxide was reported which is defined:</p> <p>TREO = Total Rare Earth Oxides which is the sum of La_2O_3, CeO_2, Pr_6O_{11}, Nd_2O_3, Sm_2O_3, Eu_2O_3, Gd_2O_3, Tb_4O_7, Dy_2O_3, Ho_2O_3, Er_2O_3, Tm_2O_3, Yb_2O_3, Lu_2O_3 and Y_2O_3</p> <p>Neodymium plus Praseodymium Oxide:</p> <p>NdPrO = the sum of Pr_6O_{11}, Nd_2O_3</p> <p>NdPr enrichment % = $\text{NdPrO} / \text{TREO}$</p>																																																	
Relationship between mineralisation widths and intercept lengths	<p><i>These relationships are particularly important in the reporting of Exploration Results.</i></p> <p><i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i></p> <p><i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</i></p>	<p>In general the holes have intersected the mineralised zone nearly normal to the host structure - any exceptions to this are noted individually.</p>																																																	
Diagrams	<p><i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i></p>	<p>The location and results received for surface samples are displayed in the attached maps and/or tables. Coordinates are ETRS-TM35FIN projection (EPSG:3067).</p>																																																	
Balanced reporting	<p><i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading reporting of Exploration Results.</i></p>	<p>Results for all samples collected in the past are displayed on the attached maps and the table in the body of the report.</p>																																																	
Other substantive exploration data	<p><i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i></p>	<p>No metallurgical or bulk density tests were conducted at the project by Prospech.</p>																																																	
Further work	<p><i>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</i></p> <p><i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i></p>	<p>Prospech may carry out further drilling.</p> <p>Metallurgical test work is planned utilising modern samples</p>																																																	